PVP20

Course Code	20EE3451	Year	II	Semester(s)	Π
Course Category	Professional Core	Branch	EEE	Course Type	Lab
Credits	1.5	L-T-P	0-0-3	Prerequisite	Electrical Machines-I Lab
Continuous Internal Evaluation:	15	Semester End Evaluation:	35	Total Marks:	50

ELECTRICAL MACHINES-II LAB

Course Outcomes					
Upon successful completion of the course, the student will be able to					
CO1	Determine the performance of three phase induction machine (L3)				
CO2	Determine the performance of single phase induction machine and special machines such as three phase schrage motor. (L3)				
CO3	Analyze the performance of the alternator and predetermine the regulation. (L4)				
CO4	Obtain the characteristics and parameters of synchronous machine (L3)				
CO5	Conduct experiments as a team / individual by using equipment available in the laboratory				
CO6	Make an effective report based on experiments				

	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:High, 2: Medium, 1:Low)													
			Str	ength	of cor	relati	<u>ons (3</u>	:High	, 2: M	edium,	1:Low	()		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3			3				3				3	3	1
CO2	3			3				3				3	3	1
CO3		3		3				3				3	3	1
CO4	3			3									3	1
CO5					3				3				3	1
CO6										3			3	1

	Syllabus	
S.No.	Contents	
1.	Brake test on three phase Induction Motor	CO1
2.	No-load & Blocked rotor tests on three phase squirrel cage induction motor	CO5 CO6
3.	Equivalent circuit of a three phase induction motor.	000
4.	Equivalent circuit of a single phase induction motor.	CO2
5.	Brake test on single phase induction motor	CO5 CO6
6.	Regulation of a three-phase alternator by synchronous impedance method	CO3
7.	Regulation of a three-phase alternator by mmf method.	CO5
8.	Regulation of a three-phase alternator by Z.P.F. method	CO6
9.	Measurement of sequence impedance of a three-phase alternator	
10.	'V ' & ' Λ ' curves of a three-phase synchronous motor.	CO4
11.	Determination of X_d and X_q of a salient pole synchronous machine	CO5 CO6
12.	Brake test on three phase Schrage motor.	CO2 CO5 CO6
13.	Determination of performance of induction generator.	CO1 CO5 CO6

Learning Resources					
Tey	kt Books				
1.	Electrical Machinery by Dr.P. S Bimbhra, 7/e, Khanna Publishers, 2018.				
2	Electric Machines by LL Nagarath and D.P. Kothari 4/e. McGraw Hill 2010				

2. Electric Machines by I.J. Nagarath and D.P. Kothari,4/e, McGraw Hill, 2010.